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We begin by discussing the transition from classical physics to quantum
theory. In particular, we become familiar with properties of waves and elec-
tromagnetic radiation and Planck’s formulation of the quantum theory. (7.1)

Einstein’s explanation of the photoelectric effect is another step toward
the development of the quantum theory. To explain experimental observa-
tions, Einstein suggested that light behaves like a bundle of particles called
photons. (7.2)

We then study Bohr’s theory for the emission spectrum of the hydrogen
atom. In particular, Bohr postulated that the energies of an electron in the
atom are quantized and transitions from higher levels to lower ones account
for the emission lines. (7.3)

Some of the mysteries of Bohr’s theory are explained by de Broglie who
suggested that electrons can behave like waves. (7.4)

We see that the early ideas of quantum theory led to a new era in physics
called quantum mechanics. The Heisenberg uncertainty principle sets the lim-
its for measurement of quantum mechanical systems. The Schrodinger wave
equation describes the behavior of electrons in atoms and molecules. (7.5)

We learn that there are four quantum numbers to describe an electron in

an atom and the characteristics of orbitals in which the electrons reside.
(7.6 and 7.7)

Electron configuration enables us to keep track of the distribution of elec-
trons in an atom and understand its magnetic properties. (7.8)

Finally, we apply the rules in writing electron configurations to the entire
periodic table. In particular, we group elements according to their valence
electron configurations. (7.9)

uantum theory enables us to predict and understand the critical role that
electrons play in chemistry. In one sense, studying atoms amounts to asking

the following questions:

. How many electrons are present in a particular atom?
2. What energies do individual electrons possess?

3. Where in the atom can electrons be found?

The answers to these questions have a direct relationship to the behavior of

all substances in chemical reactions, and the story of the search for answers
provides a fascinating backdrop for our discussion.
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Figure 7.1 Ocean water waves.

Quantum Theory and the Electronic Structure of Atoms

Wavelength |

From Classical Physics to Quantum Theory

Early attempts by nineteenth-century physicists to understand atoms and molecules
met with only limited success. By assuming that molecules behave like rebounding
balls, physicists were able to predict and explain some macroscopic phenomena, such
as the pressure exerted by a gas. However, this model did not account for the stabil-
ity of molecules; that is, it could not explain the forces that hold atoms together. It
took a long time to realize—and an even longer time to accept—that the properties
of atoms and molecules are not governed by the same physical laws as larger objects.

The new era in physics started in 1900 with a young German physicist named
Max Planck.” While analyzing the data on radiation emitted by solids heated to vari-
ous temperatures, Planck discovered that atoms and molecules emit energy only in
certain discrete quantities, or quanta. Physicists had always assumed that energy is
continuous and that any amount of energy could be released in a radiation process.
Planck’s quantum theory turned physics upside down. Indeed, the flurry of research
that ensued altered our concept of nature forever.

Properties of Waves

To understand Planck’s quantum theory, we must first know something about the
nature of waves. A wave can be thought of as a vibrating disturbance by which energy
is transmitted. The fundamental properties of a wave are illustrated by a familiar
type—water waves. (Figure 7.1). The regular variation of the peaks and troughs enable
us to sense the propagation of the waves.

Waves are characterized by their length and height and by the number of waves
that pass through a certain point in one second (Figure 7.2). Wavelength A (lambda) is
the distance between identical points on successive waves. The frequency v (nu) is the
number of waves that pass through a particular point in 1 second. Amplitude is the
vertical distance from the midline of a wave to the peak or trough.

"Max Karl Ernst Ludwig Planck (1858-1947). German physicist. Planck received the Nobel Prize in Physics
in 1918 for his quantum theory. He also made significant contributions in thermodynamics and other areas
of physics.
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Figure 7.2 (a) Wavelength and amplitude. (b) Two waves having different wavelengths and frequencies. The wavelength of the top
wave is three times that of the lower wave, but its frequency is only one-third that of the lower wave. Both waves have the same
speed and amplitude.



7.1 From Classical Physics to Quantum Theory

Another important property of waves is their speed, which depends on the type
of wave and the nature of the medium through which the wave is traveling (for
example, air, water, or a vacuum). The speed (u) of a wave is the product of its
wavelength and its frequency:

u=Av (7.1)
The inherent “sensibility” of Equation (7.1) becomes apparent if we analyze the phys-
ical dimensions involved in the three terms. The wavelength (\) expresses the length
of a wave, or distance/wave. The frequency (v) indicates the number of these waves

that pass any reference point per unit of time, or waves/time. Thus, the product of
these terms results in dimensions of distance/time, which is speed:

waves
time

distance _ distance
wave

time

Wavelength is usually expressed in units of meters, centimeters, or nanometers, and
frequency is measured in hertz (Hz), where

1 Hz = 1 cycle/s

The word “cycle” may be left out and the frequency expressed as, for example, 25/s
or 25 s~ ! (read as “25 per second”).

Electromagnetic Radiation

There are many kinds of waves, such as water waves, sound waves, and light waves.
In 1873 James Clerk Maxwell proposed that visible light consists of electromagnetic
waves. According to Maxwell’s theory, an electromagnetic wave has an electric field
component and a magnetic field component. These two components have the same
wavelength and frequency, and hence the same speed, but they travel in mutually
perpendicular planes (Figure 7.3). The significance of Maxwell’s theory is that it
provides a mathematical description of the general behavior of light. In particular, his
model accurately describes how energy in the form of radiation can be propagated
through space as vibrating electric and magnetic fields. Electromagnetic radiation is
the emission and transmission of energy in the form of electromagnetic waves.
Electromagnetic waves travel 3.00 X 10° meters per second (rounded off), or
186,000 miles per second in a vacuum. This speed differs from one medium to another, but
not enough to distort our calculations significantly. By convention, we use the symbol ¢
for the speed of electromagnetic waves, or as it is more commonly called, the speed of
light. The wavelength of electromagnetic waves is usually given in nanometers (nm).

EXAMPLE 7.1

The wavelength of the green light from a traffic signal is centered at 522 nm. What is
the frequency of this radiation?

Strategy We are given the wavelength of an electromagnetic wave and asked to calculate
its frequency. Rearranging Equation (7.1) and replacing u with c¢ (the speed of light) gives

G
v=—
N

(Continued)
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Sound waves and water waves are not
electromagnetic waves, but X rays and
radio waves are.

A more accurate value for the speed of
light is given on the inside back cover of
the book.

2 Electric field component

Magnetic field component

Figure 7.3 The electric field
and magnetic field components
of an electromagnetic wave.
These two components have the
same wavelength, frequency, and
amplitude, but they vibrate in two
mutually perpendicular planes.
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Solution Because the speed of light is given in meters per second, it is convenient to
first convert wavelength to meters. Recall that 1 nm = 1 X 107° m (see Table 1.3). We

write
1X10°m
1 pt

N = 522 pn1 X =522 %X 10 °m

=522x10"m

Substituting in the wavelength and the speed of light (3.00 X 10° m/s), the frequency is

~3.00 x 10° m/s

YT 52 %107 m
=5.75 X 10'¥s, or 5.75 X 10" Hz

Check The answer shows that 5.75 X 10" waves pass a fi xed point every second.
This very high frequency is in accordance with the very high speed of light.

Figure 7.4 shows various types of electromagnetic radiation, which differ from
one another in wavelength and frequency. The long radio waves are emitted by large
antennas, such as those used by broadcasting stations. The shorter, visible light waves
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Figure 7.4

(a) Types of electromagnetic radiation. Gamma rays have the shortest wavelength and highest frequency; radio waves

have the longest wavelength and the lowest frequency. Each type of radiation is spread over a specific range of wavelengths (and
frequencies). (b) Visible light ranges from a wavelength of 400 nm (violet) to 700 nm (red).



7.1 From Classical Physics to Quantum Theory 279

are produced by the motions of electrons within atoms and molecules. The shortest
waves, which also have the highest frequency, are associated with y (gamma) rays,
which result from changes within the nucleus of the atom (see Chapter 2). As we will
see shortly, the higher the frequency, the more energetic the radiation. Thus, ultra-
violet radiation, X rays, and <y rays are high-energy radiation.

Planck’s Quantum Theory

When solids are heated, they emit electromagnetic radiation over a wide range of
wavelengths. The dull red glow of an electric heater and the bright white light of a
tungsten lightbulb are examples of radiation from heated solids.

Measurements taken in the latter part of the nineteenth century showed that
the amount of radiant energy emitted by an object at a certain temperature depends
on its wavelength. Attempts to account for this dependence in terms of established
wave theory and thermodynamic laws were only partially successful. One theory
explained short-wavelength dependence but failed to account for the longer wave-
lengths. Another theory accounted for the longer wavelengths but failed for short
wavelengths. It seemed that something fundamental was missing from the laws of
classical physics.

Planck solved the problem with an assumption that departed drastically from
accepted concepts. Classical physics assumed that atoms and molecules could emit
(or absorb) any arbitrary amount of radiant energy. Planck said that atoms and mol-
ecules could emit (or absorb) energy only in discrete quantities, like small packages
or bundles. Planck gave the name quantum to the smallest quantity of energy that
can be emitted (or absorbed) in the form of electromagnetic radiation. The energy E
of a single quantum of energy is given by

E = hv (7.2)

where £ is called Planck’s constant and v is the frequency of radiation. The value of
Planck’s constant is 6.63 X 10~* J-s. Because v = ¢/\, Equation (7.2) can also be
expressed as

€

E=h (7.3)

According to quantum theory, energy is always emitted in integral multiples of
hv; for example, hv, 2 hv, 3 hv, . . ., but never, for example, 1.67 hv or 4.98 hv. At
the time Planck presented his theory, he could not explain why energies should be
fixed or quantized in this manner. Starting with this hypothesis, however, he had no
trouble correlating the experimental data for emission by solids over the entire range
of wavelengths; they all supported the quantum theory.

The idea that energy should be quantized or “bundled” may seem strange, but
the concept of quantization has many analogies. For example, an electric charge is
also quantized; there can be only whole-number multiples of e, the charge of one
electron. Matter itself is quantized, for the numbers of electrons, protons, and neutrons
and the numbers of atoms in a sample of matter must also be integers. Our money
system is based on a “quantum” of value called a penny. Even processes in living
systems involve quantized phenomena. The eggs laid by hens are quantized, and a
pregnant cat gives birth to an integral number of Kkittens, not to one-half or three-
quarters of a kitten.

The failure in the short-wavelength region
is called the ultraviolet catastrophe.
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The equation for the energy of the photon
has the same form as Equation (7.2)
because, as we will see shortly, electro-
magnetic radiation is emitted as well as
absorbed in the form of photons.

Incident
light

Voltage Meter

source

Figure 7.5 An apparatus for
studying the photoelectric effect.
Light of a certain frequency falls
on a clean metal surface. Ejected
electrons are attracted toward
the positive electrode. The flow
of electrons is registered by a
detecting meter. Light meters
used in cameras are based on
photoelectric effect.

Quantum Theory and the Electronic Structure of Atoms

The Photoelectric Effect

In 1905, only five years after Planck presented his quantum theory, Albert Einstein’
used the theory to solve another mystery in physics, the photoelectric effect, a phe-
nomenon in which electrons are ejected from the surface of certain metals exposed
to light of at least a certain minimum frequency, called the threshold frequency (Fig-
ure 7.5). The number of electrons ejected was proportional to the intensity (or bright-
ness) of the light, but the energies of the ejected electrons were not. Below the
threshold frequency no electrons were ejected no matter how intense the light.

The photoelectric effect could not be explained by the wave theory of light.
Einstein, however, made an extraordinary assumption. He suggested that a beam of
light is really a stream of particles. These particles of light are now called photons.
Using Planck’s quantum theory of radiation as a starting point, Einstein deduced that
each photon must possess energy E, given by the equation

E = hv
where v is the frequency of light.

EXAMPLE 7.2

Calculate the energy (in joules) of (a) a photon with a wavelength of 5.00 X 10* nm
(infrared region) and (b) a photon with a wavelength of 5.00 X 10~2 nm (X ray region).

Strategy In both (a) and (b) we are given the wavelength of a photon and asked to
calculate its energy. We need to use Equation (7.3) to calculate the energy. Planck’s
constant is given in the text and also on the back inside cover.

Solution (a) From Equation (7.3),

_,C
E= hi
(663 X 1077 -5)(3.00 X 10° m/s)
N 1X10°m
1 nm

(5.00 X 10* nm)

=398 X 1072']

This is the energy of a single photon with a 5.00 X 10* nm wavelength.
(b) Following the same procedure as in (a), we can show that the energy of the photon
that has a wavelength of 5.00 X 10 %> nm is 3.98 X 10 " J .

(Continued)

Albert Einstein (1879-1955). German-born American physicist. Regarded by many as one of the two
greatest physicists the world has known (the other is Isaac Newton). The three papers (on special relativ-
ity, Brownian motion, and the photoelectric effect) that he published in 1905 while employed as a techni-
cal assistant in the Swiss patent office in Berne have profoundly influenced the development of physics.
He received the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect.



7.2 The Photoelectric Effect

Check Because the energy of a photon increases with decreasing wavelength, we see
that an “X-ray” photon is 1 X 10° or a million times, more energetic than an “infrared”
photon.

Practice Exercise The energy of a photon is 5.87 X 10~ *° J. What is its wavelength
(in nanometers)?

Electrons are held in a metal by attractive forces, and so removing them from the
metal requires light of a suffi ciently high frequency (which corresponds to suffi ciently
high energy) to break them free. Shining a beam of light onto a metal surface can be
thought of as shooting a beam of particles—photons—at the metal atoms. If the fre-
quency of photons is such that i is exactly equal to the energy that binds the electrons
in the metal, then the light will have just enough energy to knock the electrons loose.
If we use light of a higher frequency, then not only will the electrons be
knocked loose, but they will also acquire some kinetic energy. T

Now consider two beams of light having the same frequency (which is
greater than the threshold frequency) but different intensities. The more intense beam
of light consists of a larger number of photons; consequently, it ejects more
electrons from the metal’s surface than the weaker beam of light. Thus, the more
intense the light, the greater the number of electrons emitted by the target metal;
the higher the fre-quency of the light, the greater the kinetic energy of the ejected
electrons.

Similar problem: 7.15.

CARIS
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Einstein’s theory of light posed a dilemma for scientists. On the one hand, it
explains the photoelectric effect satisfactorily. On the other hand, the particle theory
of light is not consistent with the known wave behavior of light. The only way to
resolve the dilemma is to accept the idea that light possesses both particlelike and
wavelike properties. Depending on the experiment, light behaves either as a wave or
as a stream of particles. This concept, called particle-wave duality, was totally alien
to the way physicists had thought about matter and radiation, and it took a long time
for them to accept it. We will see in Section 7.4 that a dual nature (particles and
waves) is not unique to light but is characteristic of all matter, including electrons.

Bohr’s Theory of the Hydrogen Atom

Einstein’s work paved the way for the solution of yet another nineteenth-century
“mystery” in physics: the emission spectra of atoms.

Emission Spectra

Ever since the seventeenth century, when Newton showed that sunlight is composed
of various color components that can be recombined to produce white light, chemists
and physicists have studied the characteristics of emission spectra, that is, either con-
tinuous or line spectra of radiation emitted by substances. The emission spectrum of a
substance can be seen by energizing a sample of material either with thermal energy or
with some other form of energy (such as a high-voltage electrical discharge). A “red-hot”
or “white-hot” iron bar freshly removed from a high-temperature source produces a
characteristic glow. This visible glow is the portion of its emission spectrum that is
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sensed by eye. The warmth of the same iron bar represents another portion of its emis-
sion spectrum—the infrared region. A feature common to the emission spectra of the
sun and of a heated solid is that both are continuous; that is, all wavelengths of visible
light are represented in the spectra (see the visible region in Figure 7.4).

The emission spectra of atoms in the gas phase, on the other hand, do not show
a continuous spread of wavelengths from red to violet; rather, the atoms produce bright
lines in different parts of the visible spectrum. These line spectra are the light emis-
sion only at specific wavelengths. Figure 7.6 is a schematic diagram of a discharge
tube that is used to study emission spectra, and Figure 7.7 on p. 284 shows the color
emitted by hydrogen atoms in a discharge tube.

Every element has a unique emission spectrum. The characteristic lines in atomic
spectra can be used in chemical analysis to identify unknown atoms, much as finger-
prints are used to identify people. When the lines of the emission spectrum of a known
element exactly match the lines of the emission spectrum of an unknown sample, the
identity of the sample is established. Although the utility of this procedure was rec-
ognized some time ago in chemical analysis, the origin of these lines was unknown
until early in the twentieth century. Figure 7.8 shows the emission spectra of several
elements.

Emission Spectrum of the Hydrogen Atom

In 1913, not too long after Planck’s and Einstein’s discoveries, a theoretical explana-
tion of the emission spectrum of the hydrogen atom was presented by the Danish
physicist Niels Bohr.” Bohr’s treatment is very complex and is no longer considered
to be correct in all its details. Thus, we will concentrate only on his important assump-
tions and final results, which do account for the spectral lines.

"Niels Henrik David Bohr (1885-1962). Danish physicist. One of the founders of modern physics, he
received the Nobel Prize in Physics in 1922 for his theory explaining the spectrum of the hydrogen atom.
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Figure 7.6 (a) An experimental
arrangement for studying the
emission spectra of atoms and
molecules. The gas under study
is in a discharge tube containing
two electrodes. As electrons flow
from the negative electrode to
the positive electrode, they collide
with the gas. This collision
process eventually leads to the
emission of light by the atoms (or
molecules). The emitted light is
separated into its components by
a prism. Each component color
is focused at a definite position,
according to its wavelength, and
forms a colored image of the

slit on the photographic plate.
The colored images are called
spectral lines. (b) The line emission
spectrum of hydrogen atoms.

When a high voltage is applied between
the forks, some of the sodium ions in the
pickle are converted to sodium atoms in
an excited state. These atoms emit the
characteristic yellow light as they relax to
the ground state.
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Figure 7.7 Color emitted by
hydrogen atoms in a discharge
tube. The color observed results
from the combination of the
colors emitted in the visible
spectrum.

Figure 7.8 The emission
spectra of various elements.

When Bohr fi rst tackled this problem, physicists already knew that the atom contains
electrons and protons. They thought of an atom as an entity in which electrons whirled
around the nucleus in circular orbits at high velocities. This was an appealing model
because it resembled the motions of the planets around the sun. In the hydrogen atom,
it was believed that the electrostatic attraction between the positive “solar” proton and
the negative “planetary” electron pulls the electron inward and that this force is balanced
exactly by the outward acceleration due to the circular motion of the electron.

According to the laws of classical physics, however, an electron moving in an orbit
of a hydrogen atom would experience an acceleration toward the nucleus by radiating
away energy in the form of electromagnetic waves. Thus, such an electron would quickly
spiral into the nucleus and annihilate itself with the proton. To explain why this does
not happen, Bohr postulated that the electron is allowed to occupy only certain orbits
of specifi ¢ e nergies. I n o ther w ords, t he e nergies o f t he e lectron are q uantized. A n
electron in any of the allowed orbits will not spiral into the nucleus and therefore will
not radiate energy. Bohr attributed the emission of radiation by an energized hydrogen
atom to the electron dropping from a higher-energy allowed orbit to a lower one
and emitting a quantum of energy (a photon) in the form of light (Figure 7.9).

Johannes Robert Rydberg (1854-1919). Swedish physicist. Rydberg’s major contribution to physics was
his study of the line spectra of many elements.
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Lithium (Li)

Sodium (Na)

Potassium (K)

Calcium (Ca)

Strontium (Sr)

Barium (Ba)

Zinc (Zn)

Cadmium (Cd)

Mercury (Hg)

Hydrogen (H)

Helium (He)

Neon (Ne)

Argon (Ar)

|

Alkali Metals

{univalent)

Alkaline Earth
Elements

[divalent)

Metals

(divalent)

Gases



7.3 Bohr’s Theory of the Hydrogen Atom 285

The ground state, or the ground level, which refers to the lowest energy state
of a system (which is an atom in our discussion). The sta-

bility of the electron diminishes for n = 2, 3, . . . . Each of these levels is called an
excited state, or excited level, which is higher in energy than the ground state.
Ahydrogen electron for which n is greater than 1 is said to be in an excited state.
The radius of each circular orbit in Bohr’s model depends on n°. Thus, as n increases
from 1 to 2 to 3, the orbit radius increases very rapidly. The higher the excited
state, the farther away the electron is from the nucleus (and the less tightly it is
held by the nucleus).

Bohr’s theory enables us to explain the line spectrum of the hydrogen
atom. Radiant energy absorbed by the atom causes the electron to move from a
lower-energy state (characterized by a smaller n value) to a higher-energy state
(characterized by a larger n value). Conversely, radiant energy (in the form of a
photon) is emitted when the electron moves from a higher-energy state to a lower-
energy state. The quantized movement of the electron from one energy state to
another is analogous to the move-ment of a tennis ball either up or down a set of
stairs (Figure 7.10). The ball can be on any of several steps but never between
steps. The journey from a lower step to a higher one is an energy-requiring
process, whereas movement from a higher step to a lower step is an energy-
releasing process. The quantity of energy involved in either type of change is
determined by the distance between the beginning and ending steps. Similarly, the
amount of energy needed to move an electron in the Bohr atom depends on the
difference in energy levels between the initial and fi nal states.

Photon

n=3

Figure 7.9 The emission
process in an excited hydrogen
atom, according to Bohr’s theory.
An electron originally in a higher-
energy orbit (n = 3) falls back to
a lower-energy orbit (n = 2). As
a result, a photon with energy hv
is given off. The value of hv is
equal to the difference in energies
of the two orbits occupied by the
electron in the emission process.
For simplicity, only three orbits
are shown.

Figure 7.10 A mechanical
analogy for the emission
processes. The ball can rest on
any step but not between steps.
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Figure 7.11 The energy levels
in the hydrogen atom and the
various emission series. Each
energy level corresponds to

the energy associated with an
allowed energy state for an orbit,
as postulated by Bohr and shown
in Figure 7.9. The emission lines
are labeled according to the
scheme in Table 7.1.

TABLE 7.1 The Various Series in Atomic Hydrogen Emission Spectrum

Series ng n; Spectrum Region
Lyman 1 2,3,4,... Ultraviolet

Balmer 2 3,4,5,... Visible and ultraviolet
Paschen 3 4,5,6, ... Infrared

Brackett 4 56,7,... Infrared

When we study a large number of hydrogen atoms, we observe all possible
transitions and hence the corresponding spectral lines. The brightness of a spectral
line depends on how many photons of the same wavelength are emitted.

The emission spectrum of hydrogen includes a wide range of wavelengths
from the infrared to the ultraviolet. Table 7.1 lists the series of transitions in the
hydrogen spectrum; they are named after their discoverers. The Balmer series was
particularly easy to study because a number of its lines fall in the visible range.
Figure 7.9 shows a single transition. However, it is more informative to express
transitions as shown in Figure 7.11. Each horizontal line represents an allowed
energy evel for the electron in a hydrogen atom. The energy levels are labeled with

their principal quantum numbers.
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Laser—The Splendid Light

Laser is an acronym for light amplification by stimulated
emission of radiation. It is a special type of emission that
involves either atoms or molecules. Since the discovery of la-
ser in 1960, it has been used in numerous systems designed to
operate in the gas, liquid, and solid states. These systems emit

in Action

CHEMISTRY

radiation with wavelengths ranging from infrared through vis-
ible and ultraviolet. The advent of laser has truly revolution-
ized science, medicine, and technology.

Ruby laser was the first known laser. Ruby is a deep-red
mineral containing corundum, Al,O3, in which some of the AP

Totally reflecting mirror Flash lamp The emission of laser light from a

ruby laser.

X/L\asib\e_ar’n

A = 694.3 nm

Ruby rod Partially reflecting mirror

The stimulated emission of one
photon by another photon in a
cascade event that leads to the
emission of laser light. The syn-
chronization of the light waves
produces an intensely penetrating
laser beam.

The Dual Nature of the Electron

Physicists were both mystified and intrigued by Bohrt’s theory. They questioned why
the energies of the hydrogen electron are quantized. Or, phrasing the question in a
more concrete way, Why is the electron in a Bohr atom restricted to orbiting the
nucleus at certain fixed distances? For a decade no one, not even Bohr himself, had
a logical explanation. In 1924 Louis de Broglie" provided a solution to this puzzle.
De Broglie reasoned that if light waves can behave like a stream of particles (photons),
then perhaps particles such as electrons can possess wave properties. According to
de Broglie, an electron bound to the nucleus behaves like a standing wave. Standing

"Louis Victor Pierre Raymond Duc de Broglie (1892-1977). French physicist. Member of an old and noble
family in France, he held the title of a prince. In his doctoral dissertation, he proposed that matter and
radiation have the properties of both wave and particle. For this work, de Broglie was awarded the Nobel

Prize in Physics in 1929.
288 Y



ions have been replaced by Cr’* ions. A flashlamp is used to
excite the chromium atoms to a higher energy level. The excited
atoms are unstable, so at a given instant some of them will return
to the ground state by emitting a photon in the red region of the
spectrum. The photon bounces back and forth many times be-
tween mirrors at opposite ends of the laser tube. This photon can
stimulate the emission of photons of exactly the same wave-
length from other excited chromium atoms; these photons in turn
can stimulate the emission of more photons, and so on. Because
the light waves are in phase—that is, their maxima and minima
coincide—the photons enhance one another, increasing their
power with each passage between the mirrors. One of the mirrors
is only partially reflecting, so that when the light reaches a cer-
tain intensity it emerges from the mirror as a laser beam. De-
pending on the mode of operation, the laser light may be emitted
in pulses (as in the ruby laser case) or in continuous waves.

Laser light is characterized by three properties: It is in-
tense, it has precisely known wavelength and hence energy,
and it is coherent. By coherent we mean that the light waves
are all in phase. The applications of lasers are quite numerous.
Their high intensity and ease of focus make them suitable for
doing eye surgery, for drilling holes in metals and welding,
and for carrying out nuclear fusion. The fact that they are
highly directional and have precisely known wavelengths
makes them very useful for telecommunications. Lasers are also
used in isotope separation, in holography (three-dimensional
photography), in compact disc players, and in supermarket
scanners. Lasers have played an important role in the spectro-
scopic investigation of molecular properties and of many
chemical and biological processes. Laser lights are increas-
ingly being used to probe the details of chemical reactions (see
Chapter 13).

State-of-the-art lasers used in the research laboratory of Dr. A. H. Zewail at the California Institute of Technology.

waves can be generated by plucking, say, a guitar string (Figure 7.12). The waves are
described as standing, or stationary, because they do not travel along the string. Some
points on the string, called nodes, do not move at all; that is, the amplitude of the
wave at these points is zero. There is a node at each end, and there may be nodes
between the ends. The greater the frequency of vibration, the shorter the wavelength
of the standing wave and the greater the number of nodes. As Figure 7.12 shows,
there can be only certain wavelengths in any of the allowed motions of the string.
De Broglie argued that if an electron does behave like a standing wave in the
hydrogen atom, the length of the wave must fit the circumference of the orbit exactly

Figure 7.12 The standing waves
generated by plucking a guitar
string. Each dot represents a
node. The length of the string (I)
must be equal to a whole

number times one-half the

wavelength (A/2).
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( Figure 7.13 ). Otherwise the wave would partially cancel itself on each
successive orbit. Eventually the amplitude of the wave would be reduced to zero,

<___> .
/ \ and the wave would not exist.

(b)

Figure 7.13 (a) The circum-
ference of the orbit is equal to an
integral number of wavelengths.
This is an allowed orbit. (b) The
circumference of the orbit is not

equal to an integral number of
wavelengths. As a result, the _
electron wave does not close in on

itself. This is a nonallowed orbit.
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Quantum Mechanics

The spectacular success of Bohr’s theory was followed by a series of
disappointments. Bohr’s approach did not account for the emission spectra of
atoms containing more than one electron, such as atoms of helium and lithium. Nor
did it explain why extra lines appear in the hydrogen emission spectrum when a
magnetic fi eld is applied. Another problem arose with the discovery that electrons
are wavelike: How can the “position” of a wave be specifi ed? We cannot defi ne
the precise location of a wave because a wave extends in space.

To describe the problem of trying to locate a subatomic particle that
behaves like a wave, Werner HeisenbergT formulated what is now known as the
Heisenberg uncertainty principle: it is impossible to know simultaneously both the
momentum p(defi ned as mass times velocity) and the position of a particle with
certainty.

Applying the Heisenberg uncertainty principle to the hydrogen atom, we see
that in reality the electron does not orbit the nucleus in a well-defi ned path, as
Bohr thought. If it did, we could determine precisely both the position of the electron
(from its location on a particular orbit) and its momentum (from its kinetic energy)
at the same time, a violation of the uncertainty principle.

To be sure, Bohr made a signifi cant contribution to our understanding of atoms,
and his suggestion that the energy of an electron in an atom is quantized
remains unchallenged. But his theory did not provide a complete description of
electronic behavior in atoms. In 1926 the Austrian physicist Erwin Schrédinger,*
using a com-plicated mathematical technique, formulated an equation that describes
the behavior and energies of submicroscopic particles in general, an equation
analogous to Newton’s laws of motion for macroscopic objects. The Schrodinger
equation requires advanced calculus to solve, and we will not discuss it here. It is
important to know, however, that the equation incorporates both particle behavior,
in terms of mass m, and wave behavior, in terms of a wave function  (psi), which
depends on the location in space of the system (such as an electron in an atom).
The wave function itself has no direct physical meaning. However, the probability
of finding the electron in a certain region in space is proportional to the square of

"Werner Karl Heisenberg (1901-1976). German physicist. One of the founders of modern quantum theory,
Heisenberg received the Nobel Prize in Physics in 1932.

*Erwin Schrodinger (1887-1961). Austrian physicist. Schrodinger formulated wave mechanics, which laid
the foundation for modern quantum theory. He received the Nobel Prize in Physics in 1933.

In reality, Bohr’s theory accounted for the
observed emission spectra of He" and Li?"
ions, as well as that of hydrogen. However,
all three systems have one feature in
common—each contains a single electron.
Thus, the Bohr model worked successfully
only for the hydrogen atom and for
“hydrogenlike ions.”
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Figure 7.15 A representation of
the electron density distribution
surrounding the nucleus in the
hydrogen atom. It shows a high
probability of finding the electron
closer to the nucleus.

Although the helium atom has only two
electrons, in quantum mechanics it is
regarded as a many-electron atom.

the wave function, ¢>. The idea of relating ¢/* to probability stemmed from a wave
theory analogy. According to wave theory, the intensity of light is proportional to the
square of the amplitude of the wave, or ¢>. The most likely place to find a photon is
where the intensity is greatest, that is, where the value of ¢ is greatest. A similar
argument associates 1> with the likelihood of finding an electron in regions surrounding
the nucleus.

Schrodinger’s equation began a new era in physics and chemistry, for it launched
a new field, quantum mechanics (also called wave mechanics). We now refer to the
developments in quantum theory from 1913—the time Bohr presented his analysis for
the hydrogen atom—to 1926 as “old quantum theory.”

The Quantum Mechanical Description of the Hydrogen Atom

The Schrodinger equation specifies the possible energy states the electron can occupy
in a hydrogen atom and identifies the corresponding wave functions (¢). These
energy states and wave functions are characterized by a set of quantum numbers
(to be discussed shortly), with which we can construct a comprehensive model of the
hydrogen atom.

Although quantum mechanics tells us that we cannot pinpoint an electron in an
atom, it does define the region where the electron might be at a given time. The
concept of electron density gives the probability that an electron will be found in a
particular region of an atom. The square of the wave function, i*, defines the distri-
bution of electron density in three-dimensional space around the nucleus. Regions of
high electron density represent a high probability of locating the electron, whereas
the opposite holds for regions of low electron density (Figure 7.15).

To distinguish the quantum mechanical description of an atom from Bohr’s model,
we speak of an atomic orbital, rather than an orbit. An atomic orbital can be thought
of as the wave function of an electron in an atom. When we say that an electron is
in a certain orbital, we mean that the distribution of the electron density or the prob-
ability of locating the electron in space is described by the square of the wave func-
tion associated with that orbital. An atomic orbital, therefore, has a characteristic
energy, as well as a characteristic distribution of electron density.

The Schrodinger equation works nicely for the simple hydrogen atom with its
one proton and one electron, but it turns out that it cannot be solved exactly for any
atom containing more than one electron! Fortunately, chemists and physicists have
learned to get around this kind of difficulty by approximation. For example, although
the behavior of electrons in many-electron atoms (that is, atoms containing two or
more electrons) is not the same as in the hydrogen atom, we assume that the differ-
ence is probably not too great. Thus, we can use the energies and wave functions
obtained from the hydrogen atom as good approximations of the behavior of electrons
in more complex atoms. In fact, this approach provides fairly reliable descriptions of
electronic behavior in many-electron atoms.

Quantum Numbers

In quantum mechanics, three quantum numbers are required to describe the distribu-
tion of electrons in hydrogen and other atoms. These numbers are derived from the
mathematical solution of the Schrédinger equation for the hydrogen atom. They are
called the principal quantum number, the angular momentum quantum number, and
the magnetic quantum number. These quantum numbers will be used to describe
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atomic orbitals and to label electrons that reside in them. A fourth quantum number—the
spin quantum number—describes the behavior of a specific electron and completes the
description of electrons in atoms.

The Principal Quantum Number ()

The principal quantum number (1) can have integral values 1, 2, 3, and so forth; it
corresponds to the quantum number in Equation (7.5). In a hydrogen atom, the value
of n determines the energy of an orbital. As we will see shortly, this is not the case
for a many-electron atom. The principal quantum number also relates to the average
distance of the electron from the nucleus in a particular orbital. The larger n is, the
greater the average distance of an electron in the orbital from the nucleus and there-
fore the larger the orbital.

The Angular Momentum Quantum Number (€)

The angular momentum quantum number (€) tells us the “shape” of the orbitals (see
Section 7.7). The values of € depend on the value of the principal quantum number, 7.
For a given value of n, £ has possible integral values from O to (n — 1). If n = 1, there
is only one possible value of €; thatis, ¢ =n — 1 =1 — 1 = 0. If n = 2, there are
two values of €, given by 0 and 1. If n = 3, there are three values of €, given by 0, 1,
and 2. The value of ¢ is generally designated by the letters s, p, d, . . . as follows:

¢ | O 1 2 3 4 5
Name of orbital | K p d f g h

Thus, if € = 0, we have an s orbital; if € = 1, we have a p orbital; and so on.

The unusual sequence of letters (s, p, and d) has a historical origin. Physicists
who studied atomic emission spectra tried to correlate the observed spectral lines with
the particular energy states involved in the transitions. They noted that some of the
lines were sharp; some were rather spread out, or diffuse; and some were very strong
and hence referred to as principal lines. Subsequently, the initial letters of each adjec-
tive were assigned to those energy states. However, after the letter d and starting with
the letter f (for fundamental), the orbital designations follow alphabetical order.

A collection of orbitals with the same value of n is frequently called a shell. One
or more orbitals with the same n and € values are referred to as a subshell. For
example, the shell with n = 2 is composed of two subshells, € = 0 and 1 (the allowed
values for n = 2). These subshells are called the 2s and 2p subshells where 2 denotes
the value of n, and s and p denote the values of ¢.

The Magnetic Quantum Number (m,)

The magnetic quantum number (m,) describes the orientation of the orbital in space
(to be discussed in Section 7.7). Within a subshell, the value of m, depends on the
value of the angular momentum quantum number, €. For a certain value of €, there
are (2¢ + 1) integral values of m, as follows:

=, (—C+1),...0,...(+€— 1), +¢£

If € = 0, then m, = 0. If £ = 1, then there are [(2 X 1) + 1], or three values of my,
namely, —1, 0, and 1. If € = 2, there are [(2 X 2) + 1], or five values of m,, namely,

The value of ¢ is fixed based on the type of
the orbital.

Remember that the “2” in 2s refers to the
value of n, and the “s” symbolizes the
value of €.
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Figure 7.16 The (a) clockwise
and (b) counterclockwise spins of
an electron. The magnetic fields
generated by these two spinning
motions are analogous to those
from the two magnets. The
upward and downward arrows
are used to denote the direction
of spin.

In their experiment, Stern and Gerlach
used silver atoms, which contain just
one unpaired electron. To illustrate the
principle, we can assume that hydrogen
atoms are used in the study.

Figure 7.17 Experimental
arrangement for demonstrating the
spinning motion of electrons. A
beam of atoms is directed through
a magnetic field. For example,
when a hydrogen atom with a
single electron passes through the
field, it is deflected in one direction
or the other, depending on the
direction of the spin. In a stream
consisting of many atoms, there
will be equal distributions of the
two kinds of spins, so that two
spots of equal intensity are
detected on the screen.

Quantum Theory and the Electronic Structure of Atoms

=2, —1, 0, 1, and 2. The number of m, values indicates the number of orbitals in a
subshell with a particular € value.

To conclude our discussion of these three quantum numbers, let us consider a
situation in which n = 2 and € = 1. The values of n and ¢ indicate that we have a
2p subshell, and in this subshell we have three 2p orbitals (because there are three
values of mg, given by —1, 0, and 1).

The Electron Spin Quantum Number (m;)

Experiments on the emission spectra of hydrogen and sodium atoms indicated that
lines in the emission spectra could be split by the application of an external mag-
netic field. The only way physicists could explain these results was to assume that
electrons act like tiny magnets. If electrons are thought of as spinning on their own
axes, as Earth does, their magnetic properties can be accounted for. According to
electromagnetic theory, a spinning charge generates a magnetic field, and it is this
motion that causes an electron to behave like a magnet. Figure 7.16 shows the two
possible spinning motions of an electron, one clockwise and the other counter-
clockwise. To take the electron spin into account, it is necessary to introduce a
fourth quantum number, called the electron spin quantum number (mi,), which has
a value of +3 or —1.

Conclusive proof of electron spin was provided by Otto Stern” and Walther
Gerlach® in 1924. Figure 7.17 shows the basic experimental arrangement. A beam
of gaseous atoms generated in a hot furnace passes through a nonhomogeneous
magnetic field. The interaction between an electron and the magnetic field causes
the atom to be deflected from its straight-line path. Because the spinning motion
is completely random, the electrons in half of the atoms will be spinning in one
direction, and those atoms will be deflected in one way; the electrons in the other
half of the atoms will be spinning in the opposite direction, and those atoms will
be deflected in the other direction. Thus, two spots of equal intensity are observed
on the detecting screen.

“Otto Stern (1888-1969). German physicist. He made important contributions to the study of magnetic proper-
ties of atoms and the kinetic theory of gases. Stern was awarded the Nobel Prize in Physics in 1943.

*Walther Gerlach (1889-1979). German physicist. Gerlach’s main area of research was in quantum theory.

Atom beam

Detecting screen

Magnet

Slit screen
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TABLE 7.2 Relation Between Quantum Numbers and Atomic Orbitals
Number Atomic
n € m, of Orbitals Orbital Designations
1 0 0 1 1s
2 0 0 1 2s
1 -1,0,1 3 2P 2Py, 2p.
3 0 0 1 3s
1 -1,0,1 3 3ps 3py. 3P,
2 -2,-1,0,1,2 5 3d,, 3d,., 3d,.,

3de_p, 3dz

Atomic Orbitals

Table 7.2 shows the relation between quantum numbers and atomic orbitals. We see
that when € = 0, (2¢€ + 1) = 1 and there is only one value of m,, thus we have an
s orbital. When € = 1, (2¢ + 1) = 3, so there are three values of m, or three p orbit-
als, labeled p,, p,, and p,. When £ = 2, (2¢ + 1) = 5 and there are five values of
myg, and the corresponding five d orbitals are labeled with more elaborate subscripts.
In the following sections we will consider the s, p, and d orbitals separately.

s Orbitals. One of the important questions we ask when studying the properties of
atomic orbitals is, What are the shapes of the orbitals? Strictly speaking, an orbital
does not have a well-defined shape because the wave function characterizing the
orbital extends from the nucleus to infinity. In that sense, it is difficult to say what an
orbital looks like. On the other hand, it is certainly convenient to think of orbitals as
having specific shapes, particularly in discussing the formation of chemical bonds
between atoms, as we will do in Chapters 9 and 10.

Although in principle an electron can be found anywhere, we know that most of
the time it is quite close to the nucleus. Figure 7.18(a) shows the distribution of
electron density in a hydrogen 1s orbital moving outward from the nucleus. As you

e
A

Distance from
nucleus

(a)

Radial
probability

(c)
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An s subshell has one orbital, a p subshell
has three orbitals, and a d subshell has five
orbitals.

That the wave function for an orbital theo-
retically has no outer limit as one moves
outward from the nucleus raises interesting
philosophical questions regarding the sizes
of atoms. Chemists have agreed on an
operational definition of atomic size, as

we will see in later chapters.

Figure 7.18 (a) Plot of electron
density in the hydrogen 1s orbital
as a function of the distance
from the nucleus. The electron
density falls off rapidly as the
distance from the nucleus
increases. (b) Boundary surface
diagram of the hydrogen 1s
orbital. (c) A more realistic way
of viewing electron density
distribution is to divide the 1s
orbital into successive spherical
thin shells. A plot of the probability
of finding the electron in each
shell, called radial probability, as
a function of distance shows a
maximum at 52.9 pm from the
nucleus. Interestingly, this is equal
to the radius of the innermost
orbit in the Bohr model.
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Figure 7.19 Boundary surface
diagrams of the hydrogen 1s, 2s,
and 3s orbitals. Each sphere
contains about 90 percent of
the total electron density. All s
orbitals are spherical. Roughly
speaking, the size of an orbital is
proportional to n?, where n is the
principal quantum number.

Orbitals that have the same energy are
said to be degenerate orbitals.

Figure 7.20 The boundary
surface diagrams of the three 2p
orbitals. These orbitals are identical
in shape and energy, but their
orientations are different. The p
orbitals of higher principal quantum
numbers have a similar shape.

Quantum Theory and the Electronic Structure of Atoms

can see, the electron density falls off rapidly as the distance from the nucleus increases.
Roughly speaking, there is about a 90 percent probability of finding the electron
within a sphere of radius 100 pm (1 pm = 1 X 10~'* m) surrounding the nucleus.
Thus, we can represent the s orbital by drawing a boundary surface diagram that
encloses about 90 percent of the total electron density in an orbital, as shown in
Figure 7.18(b). A 1s orbital represented in this manner is merely a sphere.

Figure 7.19 shows boundary surface diagrams for the 1s, 2s, and 3s hydrogen
atomic orbitals. All s orbitals are spherical in shape but differ in size, which increases
as the principal quantum number increases. Although the details of electron density
variation within each boundary surface are lost, there is no serious disadvantage. For
us the most important features of atomic orbitals are their shapes and relative sizes,
which are adequately represented by boundary surface diagrams.

p Orbitals. It should be clear that the p orbitals start with the principal quantum
number n = 2. If n = 1, then the angular momentum quantum number € can assume
only the value of zero; therefore, there is only a ls orbital. As we saw earlier, when
¢ = 1, the magnetic quantum number m, can have values of —1, 0, 1. Starting with
n = 2and £ = 1, we therefore have three 2p orbitals: 2p,, 2p,, and 2p, (Figure 7.20).
The letter subscripts indicate the axes along which the orbitals are oriented. These
three p orbitals are identical in size, shape, and energy; they differ from one another
only in orientation. Note, however, that there is no simple relation between the val-
ues of m, and the x, y, and z directions. For our purpose, you need only remember
that because there are three possible values of my, there are three p orbitals with
different orientations.

The boundary surface diagrams of p orbitals in Figure 7.20 show that each p
orbital can be thought of as two lobes on opposite sides of the nucleus. Like s orbit-
als, p orbitals increase in size from 2p to 3p to 4p orbital and so on.

d Orbitals and Other Higher-Energy Orbitals. When ¢ = 2, there are five values
of my, which correspond to five d orbitals. The lowest value of n for a d orbital is 3.
Because € can never be greater than n — 1, when n = 3 and € = 2, we have five 3d
orbitals (3d,y, 3d,., 3d,,, 3d_, and 3d.), shown in Figure 7.21. As in the case of
the p orbitals, the different orientations of the d orbitals correspond to the different
values of my, but again there is no direct correspondence between a given orientation
and a particular m, value. All the 3d orbitals in an atom are identical in energy. The
d orbitals for which n is greater than 3 (4d, 5d, . . .) have similar shapes.

Orbitals having higher energy than d orbitals are labeled f, g, . . . and so on. The f
orbitals are important in accounting for the behavior of elements with atomic numbers
greater than 57, but their shapes are difficult to represent. In general chemistry, we are
not concerned with orbitals having € values greater than 3 (the g orbitals and beyond).

Examples 7.6 and 7.7 illustrate the labeling of orbitals with quantum numbers
and the calculation of total number of orbitals associated with a given principal
quantum number.

2p, 2p, 2p,
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Z
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3d, 3d,, 3d,, 3d,,

Figure 7.21 Boundary surface diagrams of the five 3d orbitals. Although the 3d,: orbital looks different, it is equivalent to the other
four orbitals in all other respects. The d orbitals of higher principal quantum numbers have similar shapes.
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The Energies of Orbitals

Now that we have some understanding of the shapes and sizes of atomic orbitals, we
are ready to inquire into their relative energies and look at how energy levels affect
the actual arrangement of electrons in atoms.

According to Equation (7.5), the energy of an electron in a hydrogen atom is
determined solely by its principal quantum number. Thus, the energies of hydrogen
orbitals increase as follows (Figure 7.22):

Is <2s=2p<3s=3p=3d<4s=4p =4d =4f < ---
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Figure 7.22 Orbital energy
levels in the hydrogen atom. Each
short horizontal line represents
one orbital. Orbitals with the
same principal quantum number
(n) all have the same energy.
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Although the electron density distributions are different in the 2s and 2p orbitals,
hydrogen’s electron has the same energy whether it is in the 2s orbital or a 2p orbital.The 1s
orbital in a hydrogen atom corresponds to the most stable condition, the ground state. An
electron residing in this orbital is most strongly held by the nucleus because it is closest to
the nucleus. An electron in the 2s, 2p, or higher orbitals in a hydrogen atom is in an excited
state.

The energy picture is more complex for many-electron atoms than for hydrogen. The
energy of an electron in such an atom depends on its angular momentum quan-tum number
as well as on its principal quantum number (Figure 7.23). For many-electron atoms, the
3d energy level is very close to the 4s energy level. The total energy of an atom,
however, depends not only on the sum of the orbital energies but also on the energy of
repulsion between the electrons in these orbitals (each orbital can accommodate up to two
electrons, as we will see in Section 7.8).

Electron Configuration

The four quantum numbers n, €, my, and m; enable us to label completely an electron in any
orbital in any atom. In a sense, we can regard the set of four quantum numbers as the
“address” of an electron in an atom, somewhat in the same way that a street address, city,
state, and postal ZIP code specify the address of an individual.
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The hydrogen atom is a particularly simple system because it contains only one
electron. The electron may reside in the ls orbital (the ground state), or it may be
found in some higher-energy orbital (an excited state). For many-electron atoms, how-
ever, we must know the electron configuration of the atom, that is, how the electrons
are distributed among the various atomic orbitals, in order to understand electronic
behavior. We will use the first 10 elements (hydrogen to neon) to illustrate the rules
for writing electron configurations for atoms in the ground state. (Section 7.9 will
describe how these rules can be applied to the remainder of the elements in the peri-
odic table.) For this discussion, recall that the number of electrons in an atom is equal
to its atomic number Z.

Figure 7.22 indicates that the electron in a ground-state hydrogen atom must be
in the ls orbital, so its electron configuration is st

denotes the number of electrons
in the orbital or subshell

lsl/
7N

denotes the principal
quantum number 7

denotes the angular momentum
quantum number €

The electron configuration can also be represented by an orbital diagram that
shows the spin of the electron (see Figure 7.16):

.
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Remember that the direction of electron
spin has no effect on the energy of the
electron.

Electrons that have opposite spins are said
to be paired. In helium, mg = +% for one
electron; m, = —} for the other.

Figure 7.25 The (a) parallel
and (b) antiparallel spins of two
electrons. In (a) the two magnetic
fields reinforce each other. In

(b) the two magnetic fields cancel
each other.

The upward arrow denotes one of the two possible spinning motions of the electron.
(Alternatively, we could have represented the electron with a downward arrow.) The
box represents an atomic orbital.

The Pauli Exclusion Principle

For many-electron atoms we use the Pauli" exclusion principle to determine electron
configurations. This principle states that no two electrons in an atom can have the
same set of four quantum numbers. If two electrons in an atom should have the same
n, €, and m, values (that is, these two electrons are in the same atomic orbital), then
they must have different values of m;,. In other words, only two electrons may occupy
the same atomic orbital, and these electrons must have opposite spins. Consider the
helium atom, which has two electrons. The three possible ways of placing two elec-
trons in the ls orbital are as follows:

He
1s° 1s° 15

(a) (b) (©

Diagrams (a) and (b) are ruled out by the Pauli exclusion principle. In (a), both elec-
trons have the same upward spin and would have the quantum numbers (1, 0, 0, +5);
in (b), both electrons have downward spins and would have the quantum numbers
(1,0, 0, —3). Only the configuration in (c) is physically acceptable, because one elec-
tron has the quantum numbers (1, 0, O, +%) and the other has (1, 0, 0, —%). Thus, the
helium atom has the following configuration:

He

152

Note that 1s” is read “one s two,” not “one s squared.”

Diamagnetism and Paramagnetism

The Pauli exclusion principle is one of the fundamental principles of quantum mechan-
ics. It can be tested by a simple observation. If the two electrons in the ls orbital of
a helium atom had the same, or parallel, spins (1T or ), their net magnetic fields
would reinforce each other [Figure 7.25(a)]. Such an arrangement would make the

"Wolfgang Pauli (1900-1958). Austrian physicist. One of the founders of quantum mechanics, Pauli was
awarded the Nobel Prize in Physics in 1945.
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helium gas paramagnetic. Paramagnetic substances are those that contain net unpaired
spins and are attracted by a magnet. On the other hand, if the electron spins are
paired, or antiparallel to each other (Tl or 1), the magnetic effects cancel out
[Figure 7.25(b)]. Diamagnetic substances do not contain net unpaired spins and
are slightly repelled by a magnet.

Measurements of magnetic properties provide the most direct evidence for specific
electron configurations of elements. Advances in instrument design during the last
30 years or so enable us to determine the number of unpaired electrons in an atom
(Figure 7.26). By experiment we find that the helium atom in its ground state has no
net magnetic field. Therefore, the two electrons in the 1s orbital must be paired in accord
with the Pauli exclusion principle and the helium gas is diamagnetic. A useful rule to
keep in mind is that any atom with an odd number of electrons will always contain one
or more unpaired spins because we need an even number of electrons for complete
pairing. On the other hand, atoms containing an even number of electrons may or may
not contain unpaired spins. We will see the reason for this behavior shortly.

As another example, consider the lithium atom (Z = 3) which has three electrons.
The third electron cannot go into the 1s orbital because it would inevitably have the same
set of four quantum numbers as one of the first two electrons. Therefore, this electron
“enters” the next (energetically) higher orbital, which is the 2s orbital (see Figure 7.23).
The electron configuration of lithium is 1s*2s', and its orbital diagram is

Li
152 25!

The lithium atom contains one unpaired electron and the lithium metal is therefore
paramagnetic.

The Shielding Effect in Many-Electron Atoms

Experimentally we find that the 2s orbital lies at a lower energy level than the 2p
orbital in a many-electron atom. Why? In comparing the electron configurations of
152s" and 1s22p', we note that, in both cases, the 1s orbital is filled with two elec-
trons. Figure 7.27 shows the radial probability plots for the ls, 2s, and 2p orbitals.
Because the 2s and 2p orbitals are larger than the 1s orbital, an electron in either of
these orbitals will spend more time away from the nucleus than an electron in the 1s
orbital. Thus, we can speak of a 2s or 2p electron being partly “shielded” from the
attractive force of the nucleus by the 1s electrons. The important consequence of the
shielding effect is that it reduces the electrostatic attraction between the protons in
the nucleus and the electron in the 2s or 2p orbital.

The manner in which the electron density varies as we move from the nucleus
outward depends on the type of orbital. Although a 2s electron spends most of its
time (on average) slightly farther from the nucleus than a 2p electron, the electron
density near the nucleus is actually greater for the 2s electron (see the small maximum
for the 2s orbital in Figure 7.27). For this reason, the 2s orbital is said to be more
“penetrating” than the 2p orbital. Therefore, a 2s electron is less shielded by the s
electrons and is more strongly held by the nucleus. In fact, for the same principal
quantum number 7, the penetrating power decreases as the angular momentum quan-
tum number ¢ increases, or

s>p>d>f>---

Because the stability of an electron is determined by the strength of its attraction to
the nucleus, it follows that a 2s electron will be lower in energy than a 2p electron.
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Paramagnetic
/ substance

Figure 7.26 Initially the
paramagnetic substance was
weighed on a balance. When

the electromagnet is turned on,
the balance is offset because

the sample tube is drawn into
the magnetic field. Knowing the
concentration and the additional
mass needed to reestablish
balance, it is possible to calculate
the number of unpaired electrons
in the sample.

Electromagnet

Radial probability

2s

Distance from nucleus

Figure 7.27 Radial probability
plots (see Figure 7.18) for the 1s,
2s, and 2p orbitals. The 1s
electrons effectively shield both
the 2s and 2p electrons from the
nucleus. The 2s orbital is more
penetrating than the 2p orbital.
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To put it another way, less energy is required to remove a 2p electron than a 2s elec-
tron because a 2p electron is not held quite as strongly by the nucleus. The hydrogen
atom has only one electron and, therefore, is without such a shielding effect.
Continuing our discussion of atoms of the first 10 elements, we go next to beryl-
lium (Z = 4). The ground-state electron configuration of beryllium is 15°2s*, or

Be
15 2s°

Beryllium is diamagnetic, as we would expect.
The electron configuration of boron (Z = 5) is 1s22s22p1, or

B (T 1]
1s* 257 2p!

Note that the unpaired electron can be in the 2p,, 2p,, or 2p, orbital. The choice is
completely arbitrary because the three p orbitals are equivalent in energy. As the
diagram shows, boron is paramagnetic.

Hund’s Rule

The electron configuration of carbon (Z = 6) is 1s*2s*2p*. The following are different
ways of distributing two electrons among three p orbitals:

W e | e |
2p, 2py 2p. 2pc 2p, 2p. 2p. 2p, 2p.
(a) (b) ©

None of the three arrangements violates the Pauli exclusion principle, so we must
determine which one will give the greatest stability. The answer is provided by Hund’s
rule,” which states that the most stable arrangement of electrons in subshells is the
one with the greatest number of parallel spins. The arrangement shown in (c) satisfies
this condition. In both (a) and (b) the two spins cancel each other. Thus, the orbital

diagram for carbon is
c ]
1s* 2s% 2p*

Qualitatively, we can understand why (c) is preferred to (a). In (a), the two elec-
trons are in the same 2p, orbital, and their proximity results in a greater mutual
repulsion than when they occupy two separate orbitals, say 2p, and 2p,. The choice
of (c) over (b) is more subtle but can be justified on theoretical grounds. The fact that
carbon atoms contain two unpaired electrons is in accord with Hund’s rule.

The electron configuration of nitrogen (Z = 7) is 15°2s2p”:

N
1s* 252 2p°
Again, Hund’s rule dictates that all three 2p electrons have spins parallel to one

another; the nitrogen atom contains three unpaired electrons.

"Frederick Hund (1896-1997). German physicist. Hund’s work was mainly in quantum mechanics. He also
helped to develop the molecular orbital theory of chemical bonding.
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The electron configuration of oxygen (Z = 8) is 15°2s*2p*. An oxygen atom has

two unpaired electrons:
0
1s* 252 2p*

The electron configuration of fluorine (Z = 9) is 15*25*2p°. The nine electrons
are arranged as follows:

F
15 257 2p°

The fluorine atom has one unpaired electron.
In neon (Z = 10), the 2p subshell is completely filled. The electron configuration
of neon is 1s22s22p6, and all the electrons are paired, as follows:

Ne
1s* 2s% 2p°

The neon gas should be diamagnetic, and experimental observation bears out this
prediction.
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At this point let’s summarize what our examination of the first ten elements has
revealed about ground-state electron configurations and the properties of electrons
in atoms:

1. No two electrons in the same atom can have the same four quantum numbers.
This is the Pauli exclusion principle.

2. Each orbital can be occupied by a maximum of two electrons. They must have
opposite spins, or different electron spin quantum numbers.

3. The most stable arrangement of electrons in a subshell is the one that has the
greatest number of parallel spins. This is Hund’s rule.

The Building-Up Principle

Here we will extend the rules used in writing electron configurations for the first 10
elements to the rest of the elements. This process is based on the Aufbau principle.
The Aufbau principle dictates that as protons are added one by one to the nucleus
to build up the elements, electrons are similarly added to the atomic orbitals. Through
this process we gain a detailed knowledge of the ground-state electron configurations
of the elements. As we will see later, knowledge of electron configurations helps us
to understand and predict the properties of the elements; it also explains why the
periodic table works so well.

Table 7.3 gives the ground-state electron configurations of elements from H
(Z = 1) through Rg (Z = 111). The electron configurations of all elements except
hydrogen and helium are represented by a noble gas core, which shows in brackets
the noble gas element that most nearly precedes the element being considered, fol-
lowed by the symbol for the highest filled subshells in the outermost shells. Notice
that the electron configurations of the highest filled subshells in the outermost shells
for the elements sodium (Z = 11) through argon (Z = 18) follow a pattern similar to
those of lithium (Z = 3) through neon (Z = 10).

As mentioned in Section 7.7, the 4s subshell is filled before the 3d subshell in a
many-electron atom (see Figure 7.24). Thus, the electron configuration of potassium
(Z = 19) is 15725%2p®353p%4s'. Because 15°25*2p°35*3p° is the electron configuration
of argon, we can simplify the electron configuration of potassium by writing [Ar]4s’,
where [Ar] denotes the “argon core.” Similarly, we can write the electron configuration
of calcium (Z = 20) as [Ar]4sz. The placement of the outermost electron in the 4s
orbital (rather than in the 3d orbital) of potassium is strongly supported by experimen-
tal evidence. The following comparison also suggests that this is the correct configura-
tion. The chemistry of potassium is very similar to that of lithium and sodium, the first
two alkali metals. The outermost electron of both lithium and sodium is in an s orbital
(there is no ambiguity in assigning their electron configurations); therefore, we expect
the last electron in potassium to occupy the 4s rather than the 3d orbital.

The German word “Aufbau” means
“building up.”

1A 8A
2A 3A 4A 5A 6A 7TA|H:
N

Al

X

The noble gases.
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TABLE 7.3 The Ground-State Electron Configurations of the Elements*

Atomic Electron Atomic Electron Atomic Electron
Number Symbol Configuration Number Symbol Configuration Number Symbol Configuration
1 H 1s' 38 Sr [Kr]5s> 75 Re [Xe)6s*4f*5d°
2 He 1s? 39 Y [Kr]5s%4d" 76 Os [Xe)6s%4f*5d°
3 Li [He)2s' 40 Zr [Kr]5s*4d> 77 Ir [Xe)6s*4f 454"
4 Be [He]2s> 41 Nb [Kr]5s'4d* 78 Pt [Xe]6s'4f*5d°
5 B [He]2s%2p' 42 Mo [Kr]5s'4d’ 79 Au [Xe]6s'4f54"
6 C [He)2s*2p” 43 Tc [Kr]5s%4d> 80 Hg [Xe]6s*4f 454"
7 N [He)2s%2p® 44 Ru [Kr)5s'4d’ 81 Tl [Xel6s*4f 454" 6p!
8 ¢} [He)2s%2p* 45 Rh [Kr)5s'4d® 82 Pb [Xe]6s%4f 54" %6p*
9 F [He)2s%2p® 46 Pd [Kr}4d" 83 Bi [Xel6s%4f'*54"%6p?
10 Ne [He]2s*2p° 47 Ag [Kr]5s'4d" 84 Po [Xe]6s*4f"*5d"%6p*
11 Na [Nel3s' 48 Cd [Kr]5s°4d" 85 At [Xel6s*4f 54" 6p’
12 Mg [Ne]3s® 49 In [Kr]5s%4d'%5p" 86 Rn [Xe]6s%4f"*54"6p°
13 Al [Ne]3s?3p! 50 Sn [Kr]55%4d'5p* 87 Fr [Rn]7s'
14 Si [Ne)3s?3p? 51 Sb [Kr)55°4d"5p° 88 Ra [Rn]7s?
15 P [Ne)3s%3p® 52 Te [Kr]5s°4d"5p* 89 Ac [Rn]7s%6d"
16 S [Ne]3s%3p* 53 I [Kr]5s%4d"'5p° 90 Th [Rn]75°6d*
17 Cl [Nel3s3p° 54 Xe [Kr]5s%4d"5p° 91 Pa [Rn]7s*5f%6d"
18 Ar [Ne]3s%3p° 55 Cs [Xe]6s' 92 U [Rn]7s*5f36d"
19 K [Ar]4s' 56 Ba [Xe]6s? 93 Np [Rn]7s%5f*6d"
20 Ca [Ar}4s® 57 La [Xe)6s>5d" 94 Pu [Rn]7s%5f¢
21 Sc [Ar)4s*3d" 58 Ce [Xe)6s%4f'5d" 95 Am  [Rn]7s5f7
22 Ti [Ar]4s*3d* 59 Pr [Xe]6s%4f> 96 Cm  [Rn]7s*5f76d"
23 A% [Ar]4s*3d® 60 Nd [Xe]6s%4f" 97 Bk [Rn]7s%5f°
24 Cr [Ar}4s'3d° 61 Pm [Xe)6s*4f° 98 Cf [Rn]7s*5f'°
25 Mn [Ar]4s*3d° 62 Sm [Xe)6s%4f¢ 99 Es [Rn]7s*5f "
26 Fe [Ar]4s*3d° 63 Eu [Xe)6s*4f” 100 Fm [Rn]7s%5f"2
27 Co [Ar]4s*3d’ 64 Gd [Xel6s*4f"5d" 101 Md [Rn]7s*5f"
28 Ni [Ar]4s*3d® 65 Tb [Xe]6s%4f° 102 No [Rn]7s%5F"*
29 Cu [Ar]4s'3d" 66 Dy [Xe]6s%4f"° 103 Lr [Rn]7s*5f 64"
30 Zn [Ar]4s*3d"° 67 Ho [Xe]6s24f"! 104 Rf [Rn]7s*5f*6d*
31 Ga [Ar)4s*3d"%4p" 68 Er [Xe)6s*4f " 105 Db [Rn]7s%5f 64>
32 Ge [Ar]4s>3d"%4p> 69 Tm [Xe)6s%4f"? 106 Sg [Rn]7s*5f*6d*
33 As [Ar]4s*3d"%4p? 70 Yb [Xe)6s*4f™ 107 Bh [Rn]7s%5f*6d°
34 Se [Ar]4s*3d'%4p* 71 Lu [Xe]6s%4f ' *5d" 108 Hs [Rn]7s%5f"64°
35 Br [Ar]4s*3d"%4p° 72 Hf [Xel6s*4f 54> 109 Mt [Rn]7s*5f"6d”
36 Kr [Ar]4s*3d'%4pS 73 Ta [Xe)6s*4f*5d° 110 Ds [Rn]7s*5f 64"
37 Rb [Kr]5s' 74 W [Xe)6s*4f*54* 111 Rg [Rn]7s*5f*6d°

*The symbol [He] is called the helium core and represents 1s% [Ne] is called the neon core and represents 15725%2p°. [Ar] is called the argon core and represents
[Ne]3523p6. [Kr] is called the krypton core and represents [Ar]4sz3dm4p6. [Xe] is called the xenon core and represents [Kr]5524d'°5p6. [Rn] is called the radon core
and represents [Xe]6s%4f"*5d'"%6p°.
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The elements from scandium (Z = 21) to copper (Z = 29) are transition metals. []_
Transition metals either have incompletely filled d subshells or readily give rise to cat- [ | |ss4s586878 88 1828
ions that have incompletely filled d subshells. Consider the first transition metal series,
from scandium through copper. In this series additional electrons are placed in the 3d
orbitals, according to Hund’s rule. However, there are two irregularities. The electron
configuration of chromium (Z = 24) is [Ar]4s'3d° and not [Ar]4s*3d*, as we might
expect. A similar break in the pattern is observed for copper, whose electron configuration
is [Ar]4s'3d" rather than [Ar]4s*3d°. The reason for these irregularities is that a slightly
greater stability is associated with the half-filled (3d°) and completely filled (34'%) sub-
shells. Electrons in the same subshell (in this case, the d orbitals) have equal energy but
different spatial distributions. Consequently, their shielding of one another is relatively
small, and the electrons are more strongly attracted by the nucleus when they have the
3d’ configuration. According to Hund’s rule, the orbital diagram for Cr is

Cr [Ar]
4s'

3d°

The transition metals.

Thus, Cr has a total of six unpaired electrons. The orbital diagram for copper is
Cu [Ar]
4s' 3d"°
For elements Zn (Z = 30) through Kr (Z = 36), the 4s and 4p subshells fill in a straight-forward

manner. With rubidium (Z = 37), electrons begin to enter the n = 5 energy level.

The electron configurations in the second transition metal series [yttrium (Z = 39) to silver (Z =
47)] are also irregular, but we will not be concerned with the details here.

The Cr and Cu exceptions are not part of AP Chemistry.
However many colleges require students to know of these
exceptions.
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Figure 7.28 Classification of
groups of elements in the
periodic table according to
the type of subshell being filled

with electrons.

[T1=

38 48 5B 6B 78 88— 1B 2B

3A4A5ABATA[ |

EXAMPLE 7.11

S

Pd|

Is 1s
2s 2p
3s 3p
4s 3d 4p
Ss 4d S5p
6s 5d 6p
Ts 6d Tp
4f
5f

Write the ground-state electron configurations for (a) sulfur (S) and (b) palladium (Pd),
which is diamagnetic.

(a) Strategy How many electrons are in the S (Z = 16) atom? We start with n = 1
and proceed to fill orbitals in the order shown in Figure 7.24. For each value of ¢, we
assign the possible values of m,. We can place electrons in the orbitals according to the
Pauli exclusion principle and Hund’s rule and then write the electron configuration. The
task is simplified if we use the noble-gas core preceding S for the inner electrons.

Solution Sulfur has 16 electrons. The noble gas core in this case is [Ne]. (Ne is the
noble gas in the period preceding sulfur.) [Ne] represents 15*25*2p°. This leaves us
6 electrons to fill the 3s subshell and partially fill the 3p subshell. Thus, the electron

configuration of S is 15*25°2p®3s%3p* or [Ne]3s3p* .

(b) Strategy We use the same approach as that in (a). What does it mean to say that
Pd is a diamagnetic element?

Solution Palladium has 46 electrons. The noble-gas core in this case is [Kr]. (Kr is the
noble gas in the period preceding palladium.) [Kr] represents

15725%2p%35%3p%45?3d"%4p°

The remaining 10 electrons are distributed among the 4d and Ss orbitals. The three
choices are (1) 4d'°, (2) 4d°5s', and (3) 4d®5s>. Because palladium is diamagnetic, all
the electrons are paired and its electron configuration must be

15°25°2p°35°3p%4573d ' *4p°4d"
or simply [Kr]4d" . The configurations in (2) and (3) both represent paramagnetic

elements. Check To confirm the answer, write the orbital diagrams for (1), (2), and

3).



Summary of Facts and Concepts

Key Equations N

u = A\v
hv
E=ht
N

(7.1)
(7.2)

(7.3)

(7.8)
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Relating speed of a wave to its wavelength and frequency.

Relating energy of a quantum (and of a photon) to the frequency.

Relating energy of a quantum (and of a photon) to the wavelength.

Energy of a photon absorbed or emitted as the electron undergoes a transition
from the n; level to the n; level.

Relating wavelength of a particle to its mass m and velocity u.





